Lights That Changed Advertising

Neon tube signs are produced by the craft of bending glass tubing into shapes.
Neon tube signs are produced by the craft of bending glass tubing into shapes.

The neon sign is an evolution of the earlier Geissler tube, which is an electrified glass tube containing a “rarefied” gas (the gas pressure in the tube is well below atmospheric pressure). When a voltage is applied to electrodes inserted through the glass, an electrical glow discharge results. Geissler tubes were quite popular in the late 1800s, and the different colors they emitted were characteristics of the gases within. They were, however, unsuitable for general lighting; the pressure of the gas inside typically declined in use. The direct predecessor of neon tube lighting was the Moore tube, which used nitrogen or carbon dioxide as the luminous gas and a patented mechanism for maintaining pressure; Moore tubes were sold for commercial lighting for a number of years in the early 1900s.

[see_also link=”” target=”_blank”] Street Fashion And Urban Subcultures I Wake[/see_also]

The discovery of neon in 1898 included the observation of a brilliant red glow in Geissler tubes. Immediately following neon’s discovery, neon tubes were used as scientific instruments and novelties. A sign created by Perley G. Nutting and displaying the word “neon” may have been shown at the Louisiana Purchase Exposition of 1904, although this claim has been disputed; in any event, the scarcity of neon would have precluded the development of a lighting product. However, after 1902, Georges Claude’s company in France, Air Liquide, began producing industrial quantities of neon, essentially as a byproduct of their air liquefaction business. From December 3–18, 1910, Claude demonstrated two 12-metre (39 ft) long bright red neon tubes at the Paris Motor Show. This demonstration lit a peristyle of the Grand Palais (a large exhibition hall). Claude’s associate, Jacques Fonseque, realized the possibilities for a business based on signage and advertising. By 1913 a large sign for the vermouth Cinzano illuminated the night sky in Paris, and by 1919 the entrance to the Paris Opera was adorned with neon tube lighting.[2] Over the next several years, patents were granted to Claude for two innovations still used today: a “bombardment” technique to remove impurities from the working gas of a sealed sign, and a design for the internal electrodes of the sign that prevented their degradation by sputtering.

[pull_left]In 1923, Georges Claude and his French company Claude Neon introduced neon gas signs to the United States by selling two to a Packard car dealership in Los Angeles. Earle C. Anthony purchased the two signs reading “Packard” for $1,250 apiece. Neon lighting quickly became a popular fixture in outdoor advertising. Visible even in daylight, people would stop and stare at the first neon signs for hours, dubbed “liquid fire.”[/pull_left]

The next major technological innovation in neon lighting and signs was the development of fluorescent tube coatings. Jacques Risler received a French patent in 1926 for these. Neon signs that use an argon/mercury gas mixture emit a good deal of ultraviolet light. When this light is absorbed by a fluorescent coating, preferably inside the tube, the coating (called a “phosphor”) glows with its own color. While only a few colors were initially available to sign designers, after the Second World War (1939–1945) phosphor materials were researched intensively for use in color televisions. About two dozen colors were available to neon sign designers in the 1960s, and today there are nearly 100 available colors.


An enormous number of colors can be created by combinations of different gases and fluorescent coatings in the tube.

Neon tube signs are produced by the craft of bending glass tubing into shapes. A worker skilled in this craft is known as a glass bender, neon bender or tube bender. The neon tube is made out of 4-5′ straight sticks of hollow glass sold by sign suppliers to neon shops worldwide where they are manually assembled into individual custom designed and fabricated lamps. There are many dozens of colors available, determined by the type of glass tubing and the composition of the gas filling.

Tubing in external diameters ranging from about 8–15 mm with a 1 mm wall thickness is most commonly used, although 6 mm tubing is now commercially available in colored glass tubes. The tube is heated in sections using several types of burners that are selected according to the amount of glass to be heated for each bend. These burners include ribbon, cannon, or crossfires, as well as a variety of gas torches. Ribbon burners are strips of fire that make the gradual bends while crossfires, when used, make the sharp bends.

The interior of the tubes may be coated with a thin phosphorescent powder coating, affixed to the interior wall of the tube by a binding material. The tube is filled with a purified gas mixture, and the gas ionized by a high voltage applied between the ends of the sealed tube through cold cathodes welded onto the ends. The color of the light emitted by the tube may be just that coming from the gas, or the light from the phosphor layer. Different phosphor-coated tubing sections may be butt welded together using glass working torches to form a single tube of varying colors, for effects such as a sign where each letter displays a different color letter within a single word, such as shown in the sign in the photo above right.

“Neon” is used to denote the general type of lamp, but neon gas is only one of the types of tube gases principally used in commercial application. Pure neon gas is used to produce only about a third of the colors. The greatest number of colors is produced by filling with another inert gas, argon, and a drop of mercury (Hg) which is added to the tube immediately after purification. When the tube is ionized by electrification, the mercury evaporates into mercury vapor, which fills the tube and produces strong ultraviolet light. The ultraviolet light thus produced excites the various phosphor coatings designed to produce different colors. Even though this class of neon tubes use no neon at all, they are still denoted as “neon.” Mercury-bearing lamps are a type of cold-cathode fluorescent lamps.

Each type of neon tubing produces two completely different possible colors, one with neon gas and the other with argon/mercury. Some “neon” tubes are made without phosphor coatings for some of the colors. Clear tubing filled with neon gas produces the ubiquitous yellowish orange color with the interior plasma column clearly visible, and is the cheapest and simplest tube to make. Traditional neon glasses in America over 20 years old are lead glass that are easy to soften in gas fires, but recent environmental and health concerns of the workers has prompted manufacturers to seek more environmentally safe special soft glass formulas. One of the vexing problems avoided this way is lead glass’ tendency to burn into a black spot emitting lead fumes in a bending flame too rich in the fuel/oxygen mixture. Another traditional line of glasses was colored soda lime glasses coming in a myriad of glass color choices, which produce the highest quality, most hypnotically vibrant and saturated hues. Still more color choices are afforded in either coating, or not coating, these colored glasses with the various available exotic phosphors.

Long lifetime

It is the wide range of colors and the ability to make a tube that can last for years if not decades without replacement, that makes this an art. Since these tubes require so much custom labor, they would have very little economic viability if they did not have such a long lifetime when well processed. The intensity of neon light produced increases slowly as the tube diameter grows smaller, that is, the intensity varies inversely with the square root of the interior diameter of the tubing, and the resistance of the tube increases as the tubing diameter decreases accordingly, because tube ionization is greatest at the center of the tube, and the ions migrate to and are recaptured and neutralized at the tube walls. The greatest cause of neon tube failure is the gradual absorption of neon gas by high voltage ion implantation into the interior glass walls of the tubes which depletes the gas, and eventually causes the tube resistance to rise to a level that it can no longer light at the rated voltage, but this may take well over 50 years if the tube is properly processed during bombardment and gas back-fillng.

The actual cause of 80% of neon sign failures is the burnout of the high voltage electrical wires connecting the tubes inside of metal conduits. A very common type of neon sign is made from a formed metal box having a colored translucent face, called “channel lettering”. Newer channel letter signs are being replaced by high brightness LEDs.

This long lifetime has created a practical market for neon use for interior architectural cove lighting in a wide variety of uses including homes, where the tube can be bent to any shape, fitted in a small space, and can do so without requiring tube replacement for a decade or more.

Tube bending

A section of the glass is heated until it is malleable; then it is bent into shape and aligned to a neon sign pattern paper containing the graphics or lettering that the final product will ultimately conform to. This is where the real art of neon comes in, that takes some artisans from a year up to several years of practice to master. A tube bender corks off the hollow tube before heating and holds a latex rubber blow hose at the other end, through which he gently presses a small amount of air to keep the tube diameter constant as it is bending. The trick of bending is to bend one small section or bend at a time, heating one part of the tubing so that it is soft, without heating some other part of the tube as well, which would make the bend uncontrollable. A bend, once the glass is heated, must be brought to the pattern and fitted rapidly before the glass hardens again because it is difficult to reheat once completely cooled without risking breakage. It is frequently necessary to skip one or more bends and come back to it later, by measuring carefully along the length of the tube. One tube letter may contain 7-10 small bends, and mistakes are not easily corrected without going back and starting all over again. If more tubing is required, another piece is welded onto it, or the parts can be all welded onto each other at the final step. The finished tube must be absolutely vacuum tight to operate, and it must be vacuum clean inside. Once the tube is filled with mercury, if any mistake is made after that, the entire tube has to, or should be, started over anew, because breathing heated mercury impregnated glass and phosphor causes long term heavy metal poisoning in neon workers. Sticks of tubing are joined until the tube reaches an impractical size, and several tubes are joined in series with the high voltage neon transformer. Extreme ends of the electrical circuit must be isolated from each other to prevent tube puncture and buzzing from corona effect.


Subscribe to Our Newsletter